

ASIAN SCHOOL OF TECHNOLOGY, BHUBANESWAR

DEPARTMENT OF CIVIL ENGINEERING

LESSON PLAN

Discipline: Civil engineering	Semester : 3 rd	No. of periods available: 51	Name of Teaching Faculty: Ankita Rath
Subject: Structural Design- I	No. of Days/ per week class allotted: 4 periods per week		No. of weeks : 13
Week	Class Day		Topics to be covered
1 st	1 st	1	Objectives of design and detailing. State the different methods of design of concrete structures.
	2 nd	1	Introduction to reinforced concrete, R.C. sections their behaviour, grades of concrete and steel. Permissible stresses, assumption in W.S.M.
	3 rd	1	Flexural design and analysis of single reinforced sections from first principles.
	4 th	1	Concept of under reinforced, over reinforced and balanced sections.
2 nd	5 th	1	Advantages and disadvantages of WSM, reasons for its obsolescence.
	6 th	1	Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy.
	7 th	1	Types of limit states, partial safety factors for materials strength,
	8 th	1	characteristic load, design

			load loading as stored
			load, loading on structure as per I.S. 875
3 rd	9 th	1	Study of I.S specification
			regarding spacing of
			reinforcement in slab
	10^{th}	1	cover to reinforcement in
			slab, beam column &
			footing
	11^{th}	1	minimum reinforcement
			in slab, beam & column,
			lapping, anchorage,
			effective span for beam &
			slab.
	12 th	1	Limit state of collapse
			(flexure), Assumptions
4 th	13 th	1	Stress-Strain relationship
			for concrete and steel,
	a		neutral axis,
	14 th	1	stress block diagram and
			strain diagram for singly
			reinforced section.
	15 th	1	Concept of under-
			reinforced, over-
			reinforced and limiting
			section,
4.	16 th	1	neutral axis co-efficient,
5 th	17 th	1	limiting value of moment
			of resistance and limiting
			percentage
			of steel required for
			limiting singly R.C.
	416		section
	18 th	1	Analysis and design:
			determination of design
	, oth		constants
	19 th	1	moment of resistance and
			area of steel for
			rectangular
	20 th	1	sections
	20^{th}	1	Necessity of doubly
6 th	21 st	1	reinforced section
0	21	1	design of doubly
			reinforced rectangular
-	22 nd	1	section
	<i>LL</i>	1	Problem
_	23 rd	1	Problem
	24 th	1	
		_	Revise
7 th	25 th	1	
	at.		Quiz test
	26 th	1	Nominal shear stress in
_	a - th		R.C. section,
	27^{th}	1	design shear strength of

Г			aanamata massiussa sta
			concrete, maximum shear stress,
	28 th	1	design of shear
	20	1	reinforcement, minimum
			shear reinforcement,
8 th	29 th	1	forms of shear
	-	_	reinforcement.
	30 th	1	Bond and types of bonds,
			bond stress
	31 st	1	check for bond stress,
			development length in
			tension and compression,
	32 nd	1	anchorage value for hooks
			900 bend and 450 bend
			standards lapping of bars,
			check for development
	·		length
9 th	$33^{\rm rd}$	1	Numerical problems on
			deciding whether shear
			reinforcement is
			required or not,
	34 th	1	check for adequacy of the
			section in shear. Design of
			shear reinforcement
	35 th	1	Minimum shear
			reinforcement in beams
			(Explain through
			examples only).
	36 th	1	Problem
10^{th}	37 th	1	Problem
- *	38 th	1	
			Revise
	39 th	1	Class test
	40	1	Analysi
			s and
			Design
			of T-
			Beam
			(LSM)
			General
			features
			,
			advantages,
11 th	41 st	1	effective width of flange
			as per IS: 456-2000 code
			provisions.
	42 nd	1	Analysis of singly
			reinforced T-Beam
	$43^{\rm rd}$	1	strain diagram & stress
			diagram, depth of neutral
	d.		axis,
	44 th	1	moment of resistance of
			T-beam section with

			neutral axis lying within
			the flange.
12 th	45 th	1	Problem
	46 th	1	Revise
	47 th	1	Quiz test
	48 th	1	Simple numerical
			problems on deciding
			effective flange width.
13 th	49 th	1	Problems only on
			finding moment of
			resistance of T-beam
			section when N.A. lies
			within or up to the
			bottom of flange shall be
			asked in written
			examination).
	50 th	1	Design of simply
			supported one-way slabs
			for flexure check for
			deflection control and
	ct		shear.
	51 st	1	Design of one-way
			cantilever slabs and
			cantilevers chajjas for
			flexure check for
			deflection control and
			check for development
			length and shear
	52 nd	1	Previous year Question